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The methodology of obtaining a logarithmic velocity profile describing the velocity dis-
tribution in the cross section of the boundary layer, which is based on the well-known
equation of L. Prandtl, based on its semi-empirical turbulence theory, is considered.

It is shown that the logarithmic velocity profile obtained in this way does not sat-
isfy any boundary condition arising from the classical definition of such concept as the
boundary layer.

The perfect coincidence of this velocity profile with the experimental data of Niku-
radze demonstrated in the world scientific literature is a consequence of making these
profiles not in a fixed, but in a floating coordinate system. When rebuilding the velocity
profiles obtained at different Reynolds numbers, all the profiles lose their versatility and
do not coincide with the actual velocity profiles in cylindrical pipes.

Keywords: velocity profile, transverse gradient of friction stress, turbulence, boundary
layer, coordinate system, boundary conditions, universal velocity profile.

1. Introduction

In classical fluid dynamics, a logarithmic velocity profile in a turbulent boundary
layer is regarded as a perfect example of matching theoretical solutions with the
experimental data. On the basis of this, such concept as the laminar sublayer
was formulated, a physical picture of the occurrence of the regime of rough flow
of surfaces was explained, a concept such as ”dynamic” speed was introduced into
consideration, which entered the structure of the so - called coordinates, which
allowed to obtain a semi-experimental formula determining the value of turbulent
friction stress on the streamlined surface and to introduce the idea of two-and even
three-layer structure of the turbulent boundary layer into consideration.

Up to the present days all these concepts have been unshakable axioms that
determine the mechanism of interaction of moving media with streamlined surfaces.



638 Zaryankin, A. E.

Explaining the structure of the turbulent boundary layer in [1] L. Sedov writes:
in the turbulent boundary layer on the streamlined surface appears a very thin
laminar sublayer, in which the liquid velocity is not large at all, pulsations are
almost absent, but there is a very large transverse velocity gradient, causing large
values of stresses of friction forces.

In [2] L. G. Loitsyansky writes: ”the crucial fact is that the logarithmic equation
(for the velocity profile in a turbulent boundary layer) preserves its form for all
Reynolds numbers flow, or, as it is said, it is universal.”

Further on, degree formulas for speed, which do not have the universal property,
will be introduced. On the physical side, this property of logarithmic formulas
is explained by the presence of a laminar sublayer, in which all the influence of
viscosity is concentrated.

The following considerations of G. Schlichting [3] should also be noted: ”In the
immediate vicinity of the apparent turbulent friction wall, the stresses are small
compared to the viscous stresses of the laminar flow. It follows that in a very thin
layer in the immediate vicinity of the wall any turbulent flow behaves mainly as a
laminar flow. In such a thin layer, called the laminar sublayer, the velocities are so
small that the viscosity forces here are much greater than the inertia forces. This
means that turbulence cannot exist here. This laminar sublayer is adjacent to the
transition region, in which velocity pulsations are already so large that they entail
the appearance of turbulent tangential stresses comparable to the viscosity forces.
Finally, at still greater distance from the wall the turbulent stress tangent lines fully
outweigh the laminar tension.”

The statements and considerations above explain the unconditional recognition
of the existence of the laminar sublayer in the turbulent boundary layer, initially
introduced to give physical meaning to the logarithmic velocity profile. At the
same time, the correspondence of the logarithmic profile of the velocity to the
physical picture of the fluid flow within the boundary layer is not questioned and
its universality is noted, regardless of the influence of Reynolds numbers.

Accordingly, the main purpose of these considerations is to physically justify
the need for existence between the turbulent boundary layer and the streamlined
surface of a certain laminar sublayer, within which the existence of a chaotic flow
with pulsating components of the averaged velocity is impossible.

Let us consider further the extent to which the existing assessment of the log-
arithmic velocity profile and the consequence resulting of it correspond to the real
picture of the flow in the turbulent boundary layer and what is the real picture of
the interaction of moving media with streamlined surfaces.

2. Semi-empirical theory of turbulence by L. Prandtl and the logarith-
mic velocity profile. Major headings should be typeset in boldface
with the first letter of important words capitalized.

Among the numerous semi-empirical and phenomenological turbulence theories, L.
Prandtl’s semi-empirical turbulence theory [4] occupies a special place in historical
terms, since on its basis an attempt was made for the first time to establish a func-
tional connection of the turbulent friction voltage 7 with the transverse gradient
of the averaged longitudinal velocity in the turbulent wall (boundary) layer.



To the Question of a Logarithmic Velocity Profile Correspondence ... 639

It is important to note that the established connection between these values
was used to directly determine the shape of the velocity profile in cylindrical tubes
during turbulent motion of working environments inside of the tubes [2], and to
determine the velocity profiles in turbulent boundary layers.

Based on these solutions, the whole physical picture of the interaction of moving
liquid and gaseous media with streamlined surfaces is built. Since this problem
from a practical point of view, is one of the crucial problems of fluid dynamics let’s
consider from a methodological point of view, all the stages of its solution, starting
with the process of obtaining the classical logarithmic velocity profile as the result of
the integration of the known equations of L. Prandtl derived from its semi-empirical
theories of turbulence and having the following form:

dU\?
=0 () .

In the equation above, the characteristic linear dimension 1 is interpreted as a
certain way of mixing turbulent ”moles” of the liquid, on which their transverse
mixing the original longitudinal velocity is preserved.

Formally, equation (1) presents a relation between three unknown quantities:
the shearing stress 7, the averaged longitudinal velocit U and the mixing path 1.

Accordingly, if we use the above equation to determine the velocity profile within
the boundary layer, it must be supplemented by two more functional relations
linking the unknown values of 7 and 1 with the transverse coordinate y. In the
classical version of the solution of this problem it was accepted that:

T = const

I=xy @
where x is some constant.

If near the wall in a very narrow zone, the above ratios (2) can still be given
some physical meaning, then outside this zone they lose any connection with the
real picture of the flow within the boundary layer.

Nevertheless, it was under these conditions that the equation (1) was integrated

and recorded with taking into account (2) in the following form:

dU  ldy -

vt Xy

Here v* = ﬁ . Since %has the dimension of velocity, then the value of lv* is

called dynamic speed. Integrating (3), we obtain (4):

U 1
e Xln(y)—i—C (4)
It is easy to see that the equation (4) describing the velocity profile in a turbulent
boundary layer does not satisfy the central boundary condition that the flow velocity
on the streamlined surface (y = 0) must be zero (in this case U — o).
The result is quite predictable, since near the wall the accepted conditions (2)
are incompatible since they turn the original equation (1) into inequality. (In the
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left part of the equation (1.1) there is a constant, in the right part - zero). That is,
the curve described by the equation (4) is in clear contradiction to the real velocity
profile in the near-wall region of the flow.

In this situation, there can be only two solutions. Either recognize the fact of
the error of the considered solution of the problem or create a model of the flow in
the wall area, with which the peculiarity of the logarithmic velocity profile in this
region of the flow can be eliminated.

It sounds paradoxically but to give the physical meaning to the equation (4) in
classical fluid dynamics was chosen the second way — the way of correction of the
real flowing at the already derived equation.

As a result, a virtual structural model of a two-layer turbulent boundary layer
appeared. According to this model, a thin layer of laminar flow is preserved near
the streamlined surface, which was named laminar sublayer, with a thickness of y,
with the speed at the outer boundary of the U,, which is mated with the outer
turbulent part of the boundary layer.

To prove and determine such structural model of flow in a turbulent boundary
layer, the following considerations are given in [3]: ”in a laminar sublayer, the
velocities are so small that the viscosity forces here are significantly greater than
the inertia forces. This means that turbulence cannot exist here.” .

In [2] it is indicated that the turbulent friction voltage 7 = —pU’v'on the wall
is zero, as normal to its velocity fluctuations of v/cannot exist on the wall and,
consequently, on the wall my = u%.

It follows from the above statement that the increase in resistance under tur-
bulent flow regime within the boundary layer occurs only because of the growth of
the transverse velocity gradient %and is still determined only by the amount of
molecular friction. Leaving the given statements without comments and comparing
the velocities on the outer boundary of the introduced laminar sublayer with the
velocity in the turbulent part of the boundary layer determined by the formula (4),
we obtain a well-known classical formula defining the logarithmic velocity profile

U 1 v¥y
7*:7'111
v

+B (5)

where x and B are empiric constants equaled y = 0.4, B = 5.5.

Despite all the above assumptions, which clearly contradict the physical picture
of the flow, Nikuradze’s experiments (1932) aimed to determine velocity profiles in
long cylindrical tubes at different values of Reynolds numbers brilliantly confirmed
the validity of the theoretical formula (5). The results of these experiments, in-
cluded in all monographs on fluid dynamics are shown in Fig. 1, from which all
experimental data are arranged in a single line, regardless of Reynolds numbers.

In this regard, [2] contains the following statement: "it is of fundamental im-
portance that the logarithmic formula retains its shape for all Reynolds numbers
of the flow, or, as they say, is universal. The degree formulae for velocity do not
have the property of universality. On the physical side, these properties of logarith-
mic formulas are explained by the presence of a laminar sublayer, in which all the
influence of viscosity is concentrated.”
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Let us consider further to what extent the above statement corresponds to the
real picture of the flow and whether the logarithmic profile of the velocity actually
corresponds to the experimental data.

3. Coordinate focus and the degree of correspondence of the equation

(5) to the actual velocity profile

For a clearer understanding of what is depicted in Fig. 1 we present the formula
(5) as follows

1 1 *

L = —lng—k—lnav

Uov* x 0 x 7

+B (6)

Here U; is the flow rate at the outer limit of the boundary layer, and ¢ is the
physical thickness of this layer. Since the experimental data given in Fig. 1 have
been obtained for velocity profiles in a cylindrical tube on a section of stabilized
flow, in this case the entire cross section is occupied by a closed boundary layer
and, accordingly, § = r — 0 (r — 0 — the radius of the tube). Then, the formula (6)
should be written as:

rov*

U = llniJrlln

— + B 7
Uv x 10 X 0l @)

where r — current radial coordinate (Rey).

In addition, it is easy to show that % = f(Rero) and In TO'W“* = p(Rero) ,
and for the analysis it is necessary to consider the following formula describing, as
already noted, the velocity profile in a tube under turbulent flow regime:

U 1 T 1
Re)=—In— + —¢(Re) + B 8
Umaxf( ) e Xso( ) (8)

Consider using the formula entry (5) in the form (8), to what extent it corre-
sponds to the conditions in the center of the tube, where U; = U,,4z.
According to these conditions in the center of the tube % = 1 where % =1,

and d% (UU ) =0.
If you use the formula (8), then when ;= =1 in the first case we get:

U
Umax - f (1Re) (iw (Re) + B) ’

Umax

From the analysis above it follows that the logarithmic velocity profile does not
correspond to any of the two natural boundary conditions in the center of the tube,
and the boundary condition on the wall had to be corrected by introducing a certain
laminar sublayer into consideration. How, in this case, was it possible to obtain such
good coincidence of the logarithmic velocity profile with the experimental data?

To answer this question, let us turn again to the formula (8), which, at a fixed
value of Reynolds number, establishes an unmistakable relationship between the di-
mensionless distance from the wall 7 = y/ry and dimensionless speed U = U /U ax.

And in the second case d% ( U ) =0—>4+
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Accordingly, if we postpone the figure U% = Uf(Re) along the y-axis, then
its maximum value (U—U*)max will be equal to the function value f(Re. This limit
value of scale along the ordinate axis is reached at y/r0 = 1, which corresponds to
the maximum value of the coordinate on the absciss axis, equaled (ln %) max =
(ln %) . That is, at a fixed value of the number Re the velocity profile correspond-

ing to this value of the number Re, on the plane UQ —In 2" will take a quadrant

f(Re) — In % If the number Re increases, the size of the specified square will
also increase. As a result of using not fixed, but ”floating” coordinates with the
increase in the number Re there is a ”stretching” of the velocity profiles along the
shown in Fig. 1 straight line. For Fig. 2 this process is shown more clearly with the
designation of those squares, inside of which are the experimental points obtained
by measuring the number Re from Re = 5 - 10% to Re = 10° .

ujvs

2

2 ﬁ Re=1,1*10°
8 @1 Re=20°10

18 M “Qf Re=3,2410¢

16 T s T T 1

10 14 1,8 2.2 2,6 3,0 34 38 42 46 1%
v

Figure 1 Logarithmic velocity profile in semi-logarithmic coordinates at different values of
Reynolds numbers

If at Remin = 5- 103 the logarithmic profile is located in the first quadrant along o —
a line, then at Reax = 10° it occupies the entire last quadrant. Accordingly, if, for
example, in the second quadrant we take an experimental point ”b”, lying almost
in the center of the tube, the coinciding point ”b” of the last profile corresponding
to the number Re, equals to 106 will be near the wall of the tube.

It is clear that the information value of such comparison of velocity profiles
is close to zero and it is not necessary to talk about the ”universality” of the
logarithmic velocity profile.

Considering Nikuradze’s experiments on the influence of the Re number on the
shape of velocity profiles, it is necessary to note their very important feature, which
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Figure 2 The effect of Re numbers on the dimensions of the quadrants in which the corresponding
logarithmic velocity profile is located

is the fact that they were carried out on the tube section, where there was a stabi-
lized turbulent flow at a fixed coordinate ymax = 70, corresponding to the center of
the tube with maximum speed Up,.x. Accordingly, the change of number Re in this
case was carried out only as a result of increase in speeds (growth of the expense of
liquid).

Accordingly, if at a fixed average speed Uy, number Re = (U, r9)/v was lower
than its critical value, then the laminar flow regime remains along the entire length
of the tube.

The situation is fundamentally different in the flow of the plane viscous flow. In
this case at a constant velocity in the outer part of the boundary layer U, a con-

tinuous increase in the number Re = UT‘s occurs along the plate due to the increase

in the thickness of the boundary layer § (in the laminar flow regime § ~ X%5). As
a result, with a sufficient length of the plate, the laminar flow at a certain distance
from the input edge of the X.; will necessarily go into turbulent flow mode.

We will show further, to what extent in a fixed coordinate system % — ¥ the
logarithmic velocity profile corresponds to the real velocity profile on a plate at
a gradient-free flow. With that purpose we present the function (6) as follows
U "1 vty

(ln . + XB) 9)

U Ux

Built on the basis of this formula three logarithmic profile corresponding to the

Re numbers, equaling Re; = 10°, Rey = 10% , Re; = 107 are shown in Fig. 3. Here

you can also see the degree profile ; = (%)"where the exponent n = 1/7. The

given comparison shows that the logarithmic velocity profile in a fixed coordinate

system strongly depends on the number Re and is very far from the real (degree)
velocity profile.
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Figure 3 Logarithmic velocity profile in a natural fixed coordinate system U — Y with different
Re numbers

The reason for this is obvious and, as already stated, it is the fact that the loga-
rithmic velocity profile does not satisfy any of the two basic boundary conditions
on the outer limit of the boundary layer.

Here, after considering the degree of ”universality” with respect to the Re num-
ber of the logarithmic velocity profile in tubes, it is advisable to review L. G. Loit-
syansky’s statement [2] that degree velocity profiles, in contrast to the logarithmic
ones, do not possess property of universality, regarding the Reynolds numbers.

Indeed, if we construct degree velocity profiles obtained experimentally in a fixed
coordinate system U/U; — y/d [2] (Fig. 4), we can observe a strong influence of
Re numbers on their form. Accordingly, in the formula % = (%)nthe influence of
this complex must be taken into account by adjusting the index of degree n. If at
Re = 10° n = 1/7, then at Re = 107 the index of degree decreases and is n = 1/10.

The resulting difference in the form of velocity profiles at three values of Re
numbers is clearly visible in Fig. 4. But if we postpone along the ordinate axis the
function of this argument (y/4)™ and not the argument y/d itself, then as in the
logarithmic velocity profile, all described points will be located strictly along the
line drawn from the origin of coordinates of the quadrant under consideration. The
transfer of the experimental points from exponential velocity profiles to a specified
straight line is shown in Fig. 4 with the corresponding arrows.

For example, if you select relative velocity on the X-axis, then in the natural
coordinate system this velocity value will be achieved for profile 1 in the coordinate
section (point a), for profile 2 in the section (point b), and for profile 3 in the section
(point d). When using the argument as not the argument itself, but the function
of this argument , points a, b, d on the bisector of the rectangle’s coordinate angle
will be the same.
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Figure 4 The effect of the coordinate system on the graphical representation of the degree velocity
profile in the boundary layer

As a result, it is clearly seen that the experimental points coinciding on the consid-
ered line (as well as in Fig. 2) belong to completely different sections of real speed
profiles.

Based on the analysis, the following axiom related to the coordinate focus under
consideration can be formulated.

In the case when the graphical comparison of any functional dependence de-
scribing any process where experimental data do not use the argument itself, but
a function from this argument containing several parametric parameters, all experi-
mental points will inevitably be located along a straight line, regardless of the values
of those parameters that are included in the function under consideration. However,
in this case, it is impossible to determine the degree of influence of these parameters
on the considered process due to the use of so called ”universal” coordinates.

For a clearer idea of the essence of the coordinate focus under consideration,
we take into account that in a rectangular coordinate system, any function of one
argument converts the linear absciss axis into some curve on the X-Y plane.

If we go to the plane where two arbitrary functions of the same argument are
postponed along the coordinate axes (for example Y), ¢(y) and ¥ (y) between which
on the basis of experimental data it is necessary to establish a certain relationship,
the local connection between them is easiest to get with the help of a linear rela-
tionship of that kind:

¢ (y) = Kiv (y)

where K7 is an experimental coefficient.
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Then, determined experimentally for each coordinate y in the flow plane of the
value of ¢(y) and ¥(y) functions, it is easy to find the local correlation coefficient K1
according to these values. As a result, when transferring the experimental values
of the coefficient K to the plane ¢ — 1, we obtain a curve that determines the
relationship between completely arbitrary functions. In particular case, the K4
coefficient can be the same for all values of the ”y” coordinate.

Then, as a result of processing the experimental data on the plane ¢ — 1, there
appears a straight line, ”brilliantly” coinciding with the experimental data.

In relation to the boundary layer ¢ (y) = U/v*and ¥ = In %the relationship
between these functions is determined by the known equation:

yv*

U/v*=2,5In
Y

+5,9

In conclusion, let us return to the history of the degree velocity profile men-
tioned above. Practically in all monographs and textbooks on fluid dynamics, where
the logarithmic velocity profile is studied, it is noted that the use of coordinates
Ujv*— Y07 i the logarithmic profile is to some extent universal. To verify this ”uni-
versality”, the velocity profile in the turbulent boundary layer was approximated
by the degree function using the specified ”universal” complexes of the following

kind: 5 N
Ujv* = U*)
/o s( - (10)

Unlike the logarithmic velocity profile, the dependence (10) already satisfies two

of the three boundary conditions arising from the boundary layer definition. So, at
y =0 U/v* =0and at y = U = Uy, then:

U, Jv* :5(5:*>n (11)

When dividing (10) to (11), we obtain:

UU, = (%)n (12)

where according to the experimental data, the indicator "n” turned out to be a
function of Reynolds number.

As a result, it was mentioned in [2] that the power velocity profile is not, unlike
logarithmic, universal. However, if we accept that in this case ¢ (y) = U/v*and

*\ T «\ T
P = (%) then on a plane U/v* — (%) a straight line is formed that exits the

coordinate origin at an angle o equaled to arctg(D) and all sample points, regardless
of the Re numbers will be placed along this straight line (Fig.4).

4. Conclusion

e It is shown that the logarithmic velocity profile in its original form does not
satisfy any of these three boundary conditions arising from the definition of
a boundary layer. With the introduction of the concept of laminar sublayer
disappears the feature of the wall, but two conditions on the outer limit of
the velocity profile remain to be unfulfilled. Item two
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e The coincidence of experimental data on the velocity profile in cylindrical
tubes with different values of Reynolds numbers with the theoretical logarith-
mic velocity profile demonstrated in the literature is a consequence of incorrect
comparison of these values in the system of "floating” coordinates, where the
function itself is used as an argument.

e The comparison of the logarithmic velocity profile with the experimental ve-
locity profile in a fixed coordinate system showed that the calculated velocity
profile has nothing in common with the real picture of the flow.

e On the basis of the analysis, an axiom is formulated, according to which when
using argument not as an argument but the function of this argument (that
happens in the case of a graphical representation of the logarithmic velocity
profile) depending on some parameters is always provided with 100% location
of the experimental data along a straight line corresponding to the rating
formula.
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